The Action of Certain Polyvalent Cations on the Voltage-Clamped Lobster Axon
نویسندگان
چکیده
Calcium appears to be an essential participant in axon excitation processes. Many other polyvalent metal ions have calcium-like actions on axons. We have used the voltage-clamped lobster giant axon to test the effect of several of these cations on the position of the peak initial (sodium) and steady-state (potassium) conductance vs. voltage curves on the voltage axis as well as on the rate parameters for excitation processes. Among the alkaline earth metals, Mg(+2) is a very poor substitute for Ca(+2), while Ba(+2) behaves like "high calcium" when substituted for Ca(+2) on a mole-for-mole basis. The transition metal ions, Ni(+2), Co(+2), and Cd(+2) also act like high calcium when substituted mole-for-mole. Among the trivalent ions, La(+3) is a very effective Ca(+2) replacement. Al(+3) and Fe(+3) are extremely active and seem to have some similar effects. Al(+3) is effective at concentrations as low as 10(-5)M. The data suggest that many of these ions may interact with the same cation-binding sites on the axon membrane, and that the relative effects on the membrane conductance and rate parameters depend on the relative binding constants of the ions. The total amount of Na(+) transferred during a large depolarizing transient is nearly independent of the kind or amount of polyvalent ion applied.
منابع مشابه
Barbiturates Block Sodium and Potassium Conductance Increases in Voltage-Clamped Lobster Axons
Sodium pentobarbital and sodium thiopental decrease both the peak initial (Na) and late steady-state (K) currents and reduce the maximum sodium and potassium conductance increases in voltage-clamped lobster giant axons. These barbiturates also slow the rate at which the sodium conductance turns on, and shift the normalized sodium conductance vs. voltage curves in the direction of depolarization...
متن کاملAction of Certain Tropine Esters on Voltage-Clamped Lobster Axon
Tropine p-tolylacetate (TPTA) and its quaternary analogue, tropine p-tolylacetate methiodide (TPTA MeI) decrease the early transient (Na) and late (K) currents in the voltage-clamped lobster giant axon. These agents, which block the nerve action potential, reduce the maximum Na and K conductance increases associated with membrane depolarization. They also slow the rate at which the sodium condu...
متن کاملEffects of Internal Divalent Cations on Voltage-Clamped Squid Axons
We have studied the effects of internally applied divalent cations on the ionic currents of voltage-clamped squid giant axons. Internal concentrations of calcium up to 10 mM have little, if any, effect on the time-course, voltage dependence, or magnitude of the ionic currents. This is inconsistent with the notion that an increase in the internal calcium concentration produced by an inward calci...
متن کاملCurrent-Voltage Relations in the Lobster Giant Axon Membrane Under Voltage Clamp Conditions
The sucrose-gap method introduced by Stämpfli provides a means for the application of a voltage clamp to the lobster giant axon, which responds to a variety of different experimental procedures in ways quite similar to those reported for the squid axon and frog node. This is particularly true for the behavior of the peak initial current. However, the steady state current shows some differences....
متن کاملEffects of External Ions on Membrane Potentials of a Lobster Giant Axon
The effects of varying external concentrations of normally occurring cations on membrane potentials in the lobster giant axon have been studied and compared with data presently available from the squid giant axon. A decrease in the external concentration of sodium ions causes a reversible reduction in the amplitude of the action potential and its rate of rise. No effect on the resting potential...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 51 شماره
صفحات -
تاریخ انتشار 1968